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Abstract. In this work a novel algorithm for automatic subarray detection in 
microarray images, taking into account the supreme importance of this step for 
a subsequent accurate microarray image analysis, is described and evaluated. 
Initially, in the detected microarray area, a novel profiling projection-based 
method derives the subarray grid. During grid detection, spot spacing is 
estimated and used for exact subarray location. The accuracy and efficiency of 
the approach is validated in three different databases of real distorted 
microarray images giving 58.82%, 100% and 83.33% error-free detection of 
subarray position. 
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1   Introduction 

DNA microarray technology has empowered the scientific community to understand 
the fundamental aspects, underlining the growth and development of life as well as to 
explore the genetic causes of anomalies occurring in the functioning of the human 
body, offering a powerful measurement tool of gene expression activity. In a typical 
microarray setting, thousands of cDNA clones are robotically spotted onto coated 
glass slides in a highly condensed array. The information extracted in a single 
microarray experiment is derived almost exclusively from the spot intensities of a 
digital image [1]. Due to the nature of the acquisition process, microarray images 
contain noise, such as dust, fingerprints, small particles, distortions from the optical 
components and electronic noise. Furthermore, rotations, misalignment and local 
deformations of the ideally rectangular grid often occur and consequently, affect the 
accuracy of the further data analysis. 

The whole image is composed by a matrix of equally spaced blocks called 
subarrays. Each subarray consists of a certain number of rows and columns, not 
necessarily the same. As shown in Fig.1, a typical microarray image contains several 
equal-size subarrays. The spots in a subarray are arranged in a relatively uniform 
spacing with each other. They have a roughly circular shape, though some show 
significant deviations from this shape due to the experimental variation of the spotting 
procedure. In general, the shape and the size of the spots may fluctuate, significantly, 
across the array. Typical values of the spot-radius in a real microarray image are: 2, 5, 
9 and 12 pixels, while the spacing along the rows varies from 17 to 22 pixels and the 
spacing along the columns takes values between 18 and 24 pixels [2]. 



The ideal microarray image (Fig.1) has the following properties [3]:  
1. the size of the subarrays is identical, 
2. the spacing between subarrays is regular, 
3. the location of the spots is centered on the intersections of the lines of the 

subarray,  
4. the size and shape of the spots is circular and it is the same for all the spots,  
5. the location of the grids is fixed in images for a given type of slides,  
6. there is no dust or contamination on the slide and finally,  
7. the background brightness is minimal and uniform across the image. 

In typical microarray images, none of these properties is satisfied. The aim of the 
image pre-processing methods is to restore the properties of the ideal microarray 
image in distorted images. 

 

 

Fig.1. Illustration of an ideal microarray image with constant shape. 

 
 Microarray image processing consists of five tasks that are carried out 

sequentially: gridding or addressing, segmentation, quantification step, normalization 
and the data mining step [4-6]. The first critical stage in the image analysis process is 
referred to the identification of the spot centers in a microarray image or usually in a 
subarray or subgrid image so as to facilitate the addressing procedure. In the last 
decade, many approaches for solving the gridding problem have been done in the 
field of the bioinformatics but rarely the pre-processing step of the subarray detection 
is taken into consideration [7-12].  

In a considerable number of the proposed methods, referring to the gridding 
problem, it is arbitrarily assumed that the subarrays have been identified, either 
manually or automatically and the whole approach is evaluated in a single subarray 
image specified by the researcher. However, there has been a remarkable effort by 
few researchers [13-16] to overcome this assumption and to give a solution to the 
problem of the subarray detection. The disadvantage of those approaches lies in the 
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fact that the methods have not been tested in microarray images with high level of 
noise. 

In the next section, a detailed outline of the subarray detection problem is 
presented. The novel algorithm is applied in real microarray images whether the level 
of the noise is high or low. In section 3, the experimental database and a number of 
representative examples are shown. Finally, a short discussion on the results is given. 

2   Subarray detection 

The proposed method is subdivided into five main steps, as shown in Fig.2, requiring 
only four explicitly defined parameters, i.e. the number of microarray and subarray 
grid-rows and grid-columns. In Fig.3, a set of microarray image parameters and their 
definition in the rest of this document is presented. The subarray spot spacing 
parameter, although is preferred to be known a priori, it can be easily estimated and 
evaluated during step (d), as shown in Fig.2. An early estimation of the subarray spot 
spacing can be done by dividing the width of the image in pixels with the expected 
number of spot columns, i.e. the product of the number of grid columns and subarray 
grid columns (Ncol* ncol). Another parameter that proves to be valuable in detecting the 
microarray grid is the spacing of subarrays in both x and y axis as shown in Fig.1. 
Generally, the space between subarrays is not constant but a very small variance in a 
typical microarray image is met. Depending on the experimental image database, such 
a parameter may not be fixed, but there should be at least a bounded estimation either 
in absolute pixel value, or as a function of spot spacing. If this parameter is not known 
a priori it can be estimated, when needed, as described in step (e).  
 

 
Fig.2. Flowchart of the proposed subarray detection method. 

(a) Noise reduction 

(b) Detection of microarray area 

(c) Align the microarray image grid with the horizontal 
and vertical axis 

 

(e) Subarray and spot detection 

(d) Locate spot centers and evaluate spot spacing 



 
In the first step the microarray image is converted into a gray-scale image and a 

median filter is applied to reduce “salt&pepper”-like noise. Next, a binary version of 
the image is constructed, utilizing a threshold level produced by Otsu's method [17]. 
 

Parameter Symbol 

Number of microarray grid columns Ncol 

Number of microarray grid rows Nrow 

Number of subarray grid columns ncol 

Number of subarray grid rows nrow 

Spot spacing d 

Subarray spacing in X axis Dx 

Subarray spacing in Y axis Dy 

Subarray width Wsa = ncol * d 

Subarray height Hsa = nrow * d 

    
Fig.3. Description of the set of image parameters used in the proposed method. 

 
      The second step determines the rectangular region that envelops the important 
data of the microarray image. This is performed by locating the first and the last row 
and column in the binary image, where the brightness sum exceeds a specified 
threshold. The threshold may vary, depending on the geometry of the grid and the 
noise of the image. In the microarray images of the three tested databases, a threshold 
equal to the estimated spot spacing is proved to be a sufficient choice. The actual 
cropping process is performed on a greater rectangular region than the located rows 
and columns avoiding the loss of important data. An expansion of the original 
rectangle by a value equal to the threshold previously derived on every dimension, 
has proved to be sufficient. 

The next step is determining the grid alignment angle referring to horizontal and 
vertical axis. To accomplish this rotation, an alignment evaluation function is required 
performing the following estimations: 

1. the sum of white pixels of each row of the image: S(r), 
2. the maximum sum M of all rows: M=max(S(r)) 
3. the number of rows Chigh satisfying the following condition: S(r) > M – Th, 

where Th is a threshold, estimated automatically as a function of spot 
spacing. 

4. the number of rows Clow satisfying the following condition S(r) < Tl , where 
the threshold Tl is estimated also automatically as a function of spot spacing, 

5. the value of the alignment evaluation function is given by the sum of Chigh 
and Clow. 

 An alternative implementation of the proposed evaluation function can be achieved 
deriving the corresponding parameters column-wise. In both implementations the 



evaluation function counts the rows (columns), where very high and very low 
accumulated brightness across rows (columns) is met.  

The greater the evaluation function, the better grid alignment is achieved. The 
evaluation function is applied on a set of images produced by rotating the cropped 
binary image (created at step (b)) in the range of application-specific angles. The 
rotated image with the greater evaluation function defines the desired alignment. In 
practice, relatively small angles (less than 5 degrees) should be applied, and therefore 
in the third step high accuracy and low computational complexity can be achieved. 
      During the fourth step, individual spots on the aligned binary image are identified 
and labeled, detecting the isolated white areas [18]. The center of each spot is located 
by estimating the mean pixel of each isolated area. Finally, spot spacing, if not known 
a priori, can be estimated by the most frequent pixel-distance of successive spot 
centers. 
     In the last step, the grid detection takes place using an artificial binary image 
generated by drawing filled circles using as centers the previously detected spot 
centers and radius equal to the 70% of the spot spacing (derived or known a priori).  
In the artificial image, the subarray detection algorithm locates “empty” regions on 
the x and y axis of the image where the sum of columns or rows respectively is less 
than a specific threshold, indicating the possible existence of a grid line. This 
procedure is repeatedly executed, starting from a relatively small threshold and 
increasing it until specific criteria are met for each axis separately. These criteria are:  

1. The distance between successive grid-lines must lie within specific limits. 
2. The number of the detected grid lines must be equal to the number of 

expected number of grid columns or rows plus one. 
The limits of the grid line distance of the first criterion depend on the geometrical 

features of the input microarray image. Actually, the detected grid line distance may 
vary from at least Wsa to a maximum of Wsa + Dx horizontally or from Hsa to Hsa + Dy 
vertically. If the parameters Dx  and Dy are not known a priori, they can be estimated  
from the width of detected “empty” regions. 

3   Experimental results 

The proposed method was evaluated in three databases, encoded in gif-formatted 
files. The “Human Sarcomas” database contains 34 microarray images of 32 
subarrays, each one consisting of 6 x 8 spots [19]. The “Young_vs_Old_Transgenic” 
database consists of 14 microarray images containing 48 subarrays of 29 x 30 spots 
[20]. A total number of 36 cDNA microarray images from the “Lymphoma/Leukemia 
Molecular Profiling Project” (LLMPP) consists the third database, in which each 
image contains 16 subarrays of 24 x 24 spots [21]. 

The automatically defined thresholds for all microarray databases are the same 
for all databases: Th = 2 * d, Tl = 2 * d. A good choice for the crop-threshold is twice 
the estimated spot spacing. Only in the LLMPP database the microarray alignment 
process derives significant projection angles. Therefore, the searching area of the 
microarray alignment is extended to [-3, 3] degrees.  



The proposed method, regarding to the “Human sarcomas” database, has detected 
all subarrays in the 58.82% of the available images, as shown in the example of Fig.4. 
The algorithm was proved to be inefficient for a number of images, strongly distorted 
during the microarray experiment. Fig.5 (a) depicts a portion of a microarray image 
where a number of low brightness spots can be observed while strong “salt&pepper” 
noise is also present (76168.gif). This results in the loss of valuable information 
during the binary image generation and consequently to the misevaluation of spot 
spacing and the misalignment of the detected grid. In Fig.5 (b) another example of an 
extremely distorted image (71824.gif) is illustrated, where although the spot intensity 
is adequate, the noise level is too high. It must be noted that both images in Fig.5 
were inverted and adjusted to contrast level allowing the reader to perceive the 
importance of the problem. It has to be mentioned that in “Human Sarcomas” 
database the total number of subarray-spots is considerably small and the spacing 
between adjacent spot is greater than typical distance met in other databases. These 
effects allow the proposed method, during step (d), to wrongly assign “salt&pepper”-
like noise as spot centers.  
 

   
 

Fig.4. Original microarray image from the “Human Sarcomas” database, the corresponding 
artificial generated image and the detected subarrays. 
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Fig.5. (a) Portion of a microarray image, contained in the “Human Sarcomas” database with 

low brightness spots, (b) Example of a heavily noisy image in the “Human Sarcomas” database. 
 

The “Young_vs_Old_Transgenic” database results in the detection of 100% of the 
subarrays, as it works perfectly in all microarray images (Fig.6), in spite the presence 
of noise. 
 The experimental results, concerning the LLMPP database reached to 83.33% of 
successful detection of subarrays (Fig.7). Although the microarray grid of the images 
was tilted in most cases, the method managed to correct the alignment and detect the 
subarrays properly.  In contrast with the “Human Sarcomas” database, these images 
had sufficient spots density that allows the algorithm to produce a more accurate 
evaluation of spot spacing. Grid detection has failed in very heavily distorted and 
noisy images. 

4   Conclusions 

Image analysis is an essential aspect of microarray experiments. Until recently, the 
pre-processing step of the subarray detection was requiring human intervention with 
consequences in the whole procedure, as the manual detection is a time-consuming 
operation in order to achieve good results. The proposed method manages to detect, in 
a precise manner, a respectable number of subarrays of three different databases, each 
one containing various types, regarding to the abundance of noise, the number of 
subarrays and the number of rows and columns of each subarray, of scanned 
microarray images. Among the most important advantages of the proposed method is 
the accurate detection of subarrays even in relatively noisy and misaligned images. 
 



  
Fig.6. Original microarray image drawn from the “Young_vs_Old_Transgenic” database 

and its corresponding artificial generated image.  
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Fig.7 (a) Original image, (b) Grey scale rotated version, (c) Artificial generated image with 
the detected subarrays, (d) Detection of the subarrays for the original image. 
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